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Abstract

The 4D Cardiff Conversation Database (4D CCDb) is the first

4D (3D Video) audio-visual database containing natural con-

versations between pairs of people. This publicly available

database contains 17 conversations which have been fully an-

notated for speaker and listener activity: conversational facial

expressions, head motion, and verbal/non-verbal utterances. It

can be accessed at http://www.cs.cf.ac.uk/CCDb.

In this paper we describe the data collection and annota-

tion process. We also provide results of a baseline classifica-

tion experiment distinguishing frontchannel from backchannel

smiles, using 3D Active Appearance Models for feature ex-

traction, polynomial fitting for representing the data as 4D se-

quences, and Support Vector Machines for classification. We

believe this expression-rich, audio-visual database of natural

conversations will make a useful contribution to the computer

vision, affective computing, and cognitive science communities

by providing raw data, features, annotations, and baseline com-

parisons.

Index Terms: 4D Databases, Affective Computing, Face and

Gesture Recognition, Speech Analysis

1. Introduction

Face-to-face conversations are a frequent occurrence for most

people and are an important part of social communication.

These conversations, whether with well-known friends or com-

plete strangers, consist of a variety of verbal and non-verbal

signals (e.g., expressions, gestures) which control the tone, con-

tent, and flow of a conversation [1, 2, 3, 4].

Given the frequency and importance of these social in-

teractions and the advances of recent technology, it is sur-

prising that little research has focused on analysing and mod-

elling the components of natural, human conversations. Many

expression databases focus solely on the so-called prototypi-

cal expressions, such as anger, fear, and disgust; and not the

conversational expressions people observe and express on a

daily basis, such as agreement, thinking, and confusion [5, 6].

Some previous works have used 2D data for modelling con-

versational interactions [7, 8]. While 2D data is useful for some

cases, 3D data offers the advantage of providing intrinsic ge-

ometry which is invariant to pose and lighting. Moreover, 3D

dynamic (4D) data is preferred over 3D static data because it in-

cludes temporal information, which is very important for mod-

elling and synthesising realistic facial expressions.

No such databases currently exist of 4D conversations, and

so we have created the first 4D (3D video) database of natural,

dyadic conversations. This publicly available database contains

17 minutes of natural, expression rich, dyadic conversations and

was captured on two back-to-back, synchronised, 3dMD 4D

(3D video) capture systems at 60 frames per second (FPS) [9].

This setup allowed for an unobstructed line-of-sight between

the participants (Figure 3). Four experienced annotators anno-

tated 17 conversations (34 sequences). Here, sequence is used

to refer to one side of a conversation). Two annotators marked

8 conversations, while two others marked 9 conversations. Due

to the amount of data and time required for capturing and pro-

cessing 4D conversations (which is on the order of terabytes),

this dataset is not as large as those which only capture short,

specific facial expressions. However, this database allows for

the first time the modelling, analysis, and synthesis of conver-

sational interactions in 4D.

Hereafter, expression periods refers to specific anno-

tated instances. The annotations consist of 764 Frontchan-

nel/Backchannel expression periods (329 Frontchannel, 435

Backchannel. Note: Multiple annotation types can fall under

the same annotated period), 433 rigid expression periods (e.g.,

head nod), 450 non-rigid expression periods (e.g., smiles), 305

verbal/non-verbal utterance periods, and 307 ‘Other’ expression

periods (Full List with Descriptions: 3.3.2).

A baseline experiment classifying speaker from listener

smile interactions was performed to show one of the many ap-

plications the database can allow.

Understanding the nuanced expressions of conversations

will allow for advances in synthesised facial expressions, de-

ception detection, behaviour analysis, animated character in-

teraction and modelling, etc. Thus, the data will be of in-

terest to computer vision, affective computing, and cogni-

tive science researchers alike. The fully annotated database,

including 2D videos of the conversations so researchers

can easily create their own annotations, can be accessed at

http://www.cs.cf.ac.uk/CCDb.

The following sections are organised as follows: Section 2

covers related work, Section 3 describes the data collection and

annotation process, Section 4 presents a baseline experiment

performed using conversational interactions, Section 6 covers

the future work that the authors would like to conduct, and Sec-

tion 5 concludes the paper.



2. Background

Early work on conversational modelling focused on written

transcripts of conversations. As a result, traditional models of

communication assumed that in any dyadic conversation one

person was active (the speaker) and one was passive (the lis-

tener). Since at least 1970, however, it has been repeatedly

shown that human conversations are very much multimodal. In

addition to the words chosen, it has been found that prosody,

facial expressions, hand and body gestures, and gaze all con-

vey conversational information. For example, Bridwhistell has

shown that speech conveys only about one-third of the informa-

tion in a conversation [10]. The rest of the information is dis-

tributed throughout a number of non-verbal semiotic channels,

such as hand or facial motions [11]. It has also been shown that

non-verbal information is often given a greater weight than spo-

ken information: when the spoken message conflicts with facial

expressions, the information from the face tends to dominate

[12, 13].

2.1. Conversational Expressions

Once real conversations (and not just written texts) are exam-

ined, it is clear that listeners are in fact not passive. During face-

to-face conversations, there is a considerable degree of commu-

nication from the listener to the speaker, which often serves to

control conversational flow [1, 2, 3, 4, 14, 15, 16]. In [4], Yngve

coined the term backchannel to describe this exchange of sig-

nals from the listener(s) to the speaker (Figure 1). This feedback

can indicate comprehension (e.g., a look of confusion), provide

an assessment (e.g., saying “correct”), control conversational

flow, or even add new content (e.g., sentence completion). For

obvious reasons, we use the term frontchannel to refer to the

speaker’s behaviour.

Figure 1: Backchannel signals can have a significant effect on

conversational flow. They can be multimodal, including speech

and facial expressions.

In most conversations the role of the speaker and listener

changes from person to person throughout the conversation.

One moment an individual may be the speaker and producing

frontchannel expressions, while in the next moment their role

has shifted to listener and their expressions are of the backchan-

nel type. This dynamic relationship is what allows for the con-

versation’s path to be altered based on expressed and received

conversational expressions.

In order to detect conversational expressions, let alone fully

model them, it is necessary to obtain and analyse real-world test

data.

2.2. 3D/4D Databases

There are many 3D/4D databases of facial expressions which

currently exist and a comprehensive survey of these databases

can be found in [17]. Unfortunately, none of these databases

contain conversations, and as a result, conversational expres-

sions; those expressions found more commonly in everyday

conversation, such as laughing, thinking, confusion, and an ex-

pression we have termed interesting-backchannel (Figure 2, De-

scriptions: 3.3.2). While these databases are potentially useful

for modelling and synthesis of prototypical facial expressions,

they can not be used for our purposes of creating coupled mod-

els of conversational expressions.

Figure 2: Conversational Expressions: Laugh, Thinking,

Confusion, and Interesting-Backchannel

2.3. Conversational Databases

While some conversational databases exist (e.g., [18, 19, 20, 21,

22, 23]), the general lack of interaction between participants,

poor visibility of the face, and lack of 4D data, make these un-

suitable for our research. In [18], pre-defined speaker/listener

roles are assigned, which constrains the naturalness of the con-

versation. In [19], one side of the conversation contains an

operator-controlled synthesised face. In [20, 22] the subjects

are often too far from the camera for the face to be visible. Fi-

nally, the works of [21, 23] focus more on the gestures and body

movement than the facial expressions of the individuals in the

conversations.

It is for these reasons we found it necessary to create our

own 4D (3D video) database of natural, dyadic conversations.

3. Database

This paper builds on the previous work of the 2D Cardiff Con-

versation Database (CCDb) [24]. The 2D CCDb contains 30

videos of 2D annotated, natural dyadic conversations. In this

paper we present a new multimodal 4D database of natural con-

versations, designed specifically to allow analysis, modelling,

and synthesis of frontchannel/backchannel signals, conversa-

tional facial expressions, head motion, and verbal/non-verbal

utterances.

The database presented here contains natural conversa-

tions. While it was collected in a laboratory, the participants had

free rein to discuss whatever subject they wished; the conversa-

tions were not scripted. Furthermore, the participants did not

act in a simulated manner, nor were they prescribed roles to ful-

fil (i.e. a participant is not given the role of speaker or listener).

The conversations were driven by the participant’s knowledge

(or lack) of the discussion subject, which led to spontaneous

behaviour. No equipment was altered between the recording

sessions, with the exception of the chair height to ensure the

participant’s head was clearly visible to the cameras.

3.1. System Setup

Two synchronised, 4D (3D video) 3dMD, capture systems were

used for data acquisition (Figure 3). Each system consists of



7 cameras: 4 monochrome and 3 colour. These cameras are 2

megapixel with gigabit Ethernet interfaces, have a resolution of

1200×1600, a bit depth of 14-bit (mono) and 12-bit (colour),

and a capture frame rate of 60 FPS. The systems use active

stereo to create the 3D models for each frame and the geometric

model for each frame typically consists of 30,000 vertices. To

capture the speech of each subject a lapel microphone is worn

by each speaker. The audio was recorded at 44.1 KHz.

Figure 3: 3dMD Synchronised 4D Capture Systems

3.2. Capturing Process

There were four volunteer participants: two male and two fe-

male, all Caucasian, ranging from approximately 20 to 50 years

of age (Figure 4). They were recruited from the general pub-

lic and had no tie to the lab performing the data acquisition.

Three of these volunteers had a background in acting, although

for the purpose of our experiment we specified they should act

naturally. Participants with acting backgrounds were recruited

because two separate data captures were occurring on the day.

The other experiment required directed and controlled facial ex-

pressions and was done after the conversation captures. The

participants were unaware of the specifics of the research and

only given details at the conclusion of each experiment.

Figure 4: 3D Capture Examples of the 4 Participants

There were 17 one-minute conversation captures (34 se-

quences) captured over the span of 2 hours There were six cap-

ture sessions consisting of each pair of the four subjects. For

each session there were three expression-rich, one-minute cap-

tures made. The 3dMD systems were placed back-to-back to

allow the subjects to sit face-to-face with an unobstructed line-

of-sight (Figure 3). Participants were given roughly a minute

before each conversation capture session to allow them to be-

come comfortable with the environment and the other partici-

pant. They were given an indication of when recording began.

As stated above, to ensure natural conversations, the partici-

pants were not guided nor given topics to discuss. The main

topics they tended to discuss were hobbies, films and television

shows, and travel experiences. The participants were swapped

after each capture session to allow them resting time in-between

sessions, as well as to ensure they were captured on both sys-

tems.

3.3. Database Contents

3.3.1. 3D Frames

The database consists of 17 one-minute, conversation captures

(34 Sequences). Therefore, each sequence consists of approx-

imately 3500-4000 frames, with 7 camera images for each

frame: 4 mono and 3 colour (Figure 5). The 7 images are used

with the camera calibration information to create 3D frames.

The frames are 3D surface object OBJs, with a 3-image texture

map (BMP) (Figure 6, Left). Each OBJ consists of approxi-

mately 30,000 vertices, normals, and texture coordinates; and

55,000 faces (polygons). The total size per 3D frame (OBJ and

BMP) is typically around 20 MB. A cleaned OBJ is then pro-

duced using an in-lab tool which removes non-manifold ver-

tices and edges, isolated vertices, and small components, and

then produces a unified (single-image) texture map (PNG) (Fig-

ure 6, Right). The total size of the new OBJ and PNG is typ-

ically around 4.5 MB. Aside from taking up much less space,

the single-image texture map resolves texture uv-coordinate is-

sues researchers will have when they make certain modifica-

tions to the original 3D object, such as tracking non-vertex fea-

ture points through a sequence. In that specific case, new uv

texture coordinates will often be located in separate images of

the 3-image texture map, resulting in errant texture patches for

the affected faces. It is for this reason that researchers wish-

ing to track features or manipulate the 3D objects will want

to use the cleaned OBJ data. Other researchers may be happy

with the originally captured data. Therefore, both the original

and cleaned OBJ data have been made available to the research

community.

Figure 5: Mono and Colour Image Examples of a Single Frame

3.3.2. Annotations

Manual annotation of the sequences was carried out in ELAN

(Figure 7) [25]. ELAN is a publicly available, easy to use

software tool that allows for multiple annotation tracks and

hierarchical tracks. It also allows for time-accurate text

annotation of speech sections. A variety of facial expressions

and head motion (e.g., nodding) were annotated. For the

database, two trained annotators were used for each sequence.

The annotators were instructed to mark a backchannel signal



Figure 6: 3-Image and Unified Texture Maps

as any expression or gesture made in response to verbal or

non-verbal action from the speaker. These backchannel signals

can occur during or after the action. The annotation tracks

included are (based on those discussed in [6]):

• Frontchannel: Main speaker periods.

• Backchannel: Expressions, gestures, and utterances that

would be classified as backchannels.

• Agree: Up/down rigid head motion and/or vocalisation

(e.g., “yeah”).

• Disagree: Left/right rigid head motion and/or vocalisa-

tion (e.g., “no”).

• Utterance: The periods of speaker activity, including all

verbal and non-verbal activity.

– Verbal: Whole or partial words spoken.

– Non-Verbal: Verbal fillers (e.g., “umm”, “err”)

and other non-verbal sounds (e.g., “uh-huh”)

• Happy: Smile or laugh.

– Smile: Lip corners move upwards.

– Laugh: Spontaneous smile and sound.

• Interesting-Backchannel: Eyebrows slightly raised, lip

corners move downwards, slight head nod.

• Surprise-Positive: Mouth opening and/or raised eye-

brows and/or widening of eyes. Upward motion of lip

corners.

• Surprise-Negative: Mouth opening and/or raised eye-

brows and/or widening of eyes. Wrinkled brow. Down-

ward and/or backward-pull of mouth corners.

• Thinking: Eye gaze goes up and left/right.

• Confusion: Slight squint of the eyes, eyebrows move

towards each other.

• Head Nodding: Up/down rigid head motion. This can

be agreement or motion made during speech.

• Head Shake: Left/right rigid head motion. This can be

disagreement or motion made during speech.

• Head Tilt: In plane left/right rotation of the head.

• Other: Expressions not included in the list, but are in-

teresting, such as consistent facial mannerisms of an in-

dividual

Figure 7: Screenshot of ELAN Software

4. Experiment

In normal everyday conversations, especially involving people

with whom we are unfamiliar, it is common to project a friendly

demeanour. This is most commonly achieved through the smile

expression [26]. Whether due to the conversation topic, ex-

pression mimicry, or some other factor, this expression often

produces a more comfortable feeling for the individuals in the

conversation, as people tend to feel more comfortable when in-

dividuals around them reflect their own emotional state. It is un-

surprising then that the smile expression is, by far, the most fre-

quent conversational expression annotated in our dataset. Given

its importance in conversations, and frequency, smile interac-

tions were chosen for use in our classification experiment. This

provides a baseline for comparison.

Using the annotated dataset described in 3.3.2, interactions

consisting of a frontchannel (FC) smile expression with a cor-

responding backchannel (BC) smile expression, within 2 sec-

onds, were selected (Figure 8). This resulted in 22 conversation

interactions (44 sequences), which were 4D tracked and inter-

subject registered using an in-lab developed approach. An ex-

ample interaction can be seen in the supplementary materials

(ConvoInteraction.mp4).

4.0.3. Classification Methodology

In this experiment we attempted to differentiate frontchannel

from backchannel smile sequences, using 3D AAMs for feature

extraction, polynomial fitting for 4D sequence representation,

and Support Vector Machines (SVMs) for classifying the 4D

sequences.

Figure 8: Screenshot of Subjects in Conversation - Smile Ex-

changes

For each subject, Subtarget, a 3D Active Appearance Model

(AAM) was built using all sequence frames from every other



subject, Subothers [27]. 95% of the eigenenergy was kept. For

each sequence, bVectors (feature vectors) were calculated by

projecting every frame into the AAM. These bVectors describe

the shape and texture features for each projected frame.

An n
th degree polynomial fit was performed on each se-

quence of bVectors, for each principal component (Figure 9).

A grid search was performed to empirically find an appropri-

ate polynomial degree and number of principal components to

use for fitting, for each Subtarget AAM model. In the result-

ing polynomial equation, the coefficients make up the feature

vector which is used as input into a Support Vector Machine

(SVM) classifier. The main strength of this approach is that it

allows sequences of different lengths and characteristics to be

represented by the same number of values, which makes subse-

quent processing (classification, modelling, etc.) more straight-

forward. As a result of this fitting process, a sequence made up

of discrete 3D frames is now represented by a single, continu-

ous, multivariate function.

Figure 9: Example of a Polynomial Fit on bVector Sequence

Data

In the SVM classifier (libSVM [28]) Subothers sequences

comprised the training set and Subtarget sequences comprised the

testing set. A ν-SVM with a Gaussian RBF kernel was used,

and a grid search was performed for parameter optimisation, as

suggested in [29, 30]. As stated above, these steps were per-

formed for each subject, so as to provide a fully-generalised

approach to classification.

4.0.4. Results and Analysis

For classification accuracy, Area Under the ROC Curve (AUC)

was chosen as the performance metric because it has been

shown to be more reliable and contain more preferable prop-

erties than raw classification accuracy, as described in [31, 32,

33]. The average accuracy for all four subjects was 97.54%.

Details of the scores, polynomial degrees, number of principal

components used, and confusion matrices for each subject can

be found in the supplementary materials (ClassificationResult-

Details.pdf).

This experiment was able to validate two main points. First,

frontchannel and backchannel signals contain characteristics

which allow them to be differentiated; this is most likely the ver-

tical movement of the mouth of the speaker (frontchannel sig-

nal). Second, the results support the idea of using this database

for modelling, analysing, and synthesising conversational inter-

actions.

5. Conclusion

In this paper we presented the first 4D database of natural,

dyadic conversations. This publicly available database con-

sists of 17 minutes of expression rich conversations, and man-

ual annotations of frontchannel and backchannel signals, which

include conversational facial expressions, head motion, and

verbal/non-verbal utterances. A baseline experiment classify-

ing frontchannel and backchannel smile interactions was per-

formed. The results showed a respectable 97.54% classification

accuracy across subjects.

Due to the amount of data and time required for capturing

and processing 4D conversations (raw data, OBJ data, cleaned

data) this dataset is not as large as those which only capture

short, specific facial expressions. However, this database al-

lows for the first time the modelling, analysis, and synthesis of

conversational interactions in 4D, and once we and the research

community better understand the characteristics of interesting

conversations, we can capture more data for other uses.

The full database includes the original 3D frames, cleaned

3D frames, manual annotations, and 2D videos of the conversa-

tions, and can be accessed at http://www.cs.cf.ac.uk/CCDb. It is

the hope of the authors that the research community will use this

database of 4D conversations to further research in computer vi-

sion, affective computing, cognitive science, and related fields.

6. Future Work

While the authors are excited to see what the greater commu-

nity can produce from this database, our work will continue

with building 4D models of appearance, specifically of conver-

sational expressions. Analysis of conversation roles, the effect

of conversational expression mimicry, and perceptual experi-

ments using synthesised expressions are just some of the re-

search topics that will be explored using this database.
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