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121 INTRODUCTION

Shape is a critical element of computer vision systems. dtergial value is made
more evident by considering how its effectiveness has besmdstrated in biological
visual perception. For instance, in psychophysical expenis it was shown that
for the task of object recognition, the outline of the shajes generally sufficient,
rendering unnecessary the additional internal detaitutex shading, etc. available
in the control photographs [1, 22]. A second example is theadled “shape bias”.
When children are asked to name new objects, generalisingdrset of previously
viewed artificial objects, it was found that they tend to galise on the basis of
shape, rather than material, colour, or texture [28, 56].

There are many components in computer vision systems thatis& shape in-
formation, for example classification [43], shape pantitig [50], contour group-
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ing [24], removing spurious regions [54], image registmat|62], shape from con-
tour [6], snakes [11], image segmentation [31], data mif@, and content based
image retrieval [13], to name just a few.

Over the years many ways have been reported in the literfaiudescribing shape.
Sometimes they provide a unified approach that can be applagtermine a variety
of shape measures [35], but more often they are specific togéesaspect of shape.
This material is covered in several reviews [26, 32, 53, @id|@comparison of some
different shape representations has been carried out Befae Core Experiment
CE-Shape-1 for MPEG-7 [2, 29, 61].

Many shape representations (e.g. moments, Fourier, taagegie) are capable
of reconstructing the original data, possibly up to a transftion (e.g. modulo
translation, rotation, scaling, etc). However, for thispter the completeness of
the shape representations is not an issue. A simpler and coonpact class of
representation in common use is the one dimensional sign@lg. the histogram of
tangent angles). This chapter does not cover such schetheg éut is focused on
shape measures that compute single scalar values from a.shlhgir advantage is
that not only are these measures extremely concise (bagefttrage and matching)
but they tend to be designed to be invariant to rotationgstations, and uniform
scalings, and often have an intuitive meaning (e.g. cirgyasince they describe
a single aspect of the shape. The latter point can be helpfulders of computer
vision systems to understand their reasoning. The shapasstives we assume to
be extracted from images and are presented either in thedbarset of boundary or
interior pixels, or as polygons.

The majority of the measures described have been normalisetht their values
lie in the rangég0, 1] or (0, 1]. Nevertheless, even when measuring the same attribute
(e.g. there are many measures of convexity) the values ofmthesures are not
directly comparable since they have not been developed mnanon framework
(e.g. a probabilistic interpretation).

The chapter is organised as follows: Section 12.2 descsibeal shape descrip-
tors that are derived by a use of minimum bounding rectangHse considered
shape descriptors are: rectangularity, convexity, ieedrity, and orientability. Sec-
tion 12.3 extends the discussion to the shape descriptatém be derived from
other bounding shapes (different from rectangles). Fjtérshape model to the data
is a general approach to the measurement of shape; an avesf/tais is given in
Section 12.4. Geometric moments are widely used in compidiem, and their ap-
plication to shape analysis is described in Section 12.%. pgdwerful framework of
Fourier analysis has also been applied, and Fourier désigigre a standard means
of representing shape, as discussed in Section 12.6.

122 MINIMUM BOUNDING RECTANGLES

As we will see in the next section, using a bounding shape @vamon method for
generating shape measures, but here we will concentratesioigla shape, optimal
bounding rectangles, and outline a variety of its applaregito shape analysis.
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Let R(S, a) be the minimal area rectangle with edges parallel to thedioate
axes which includes polyga#irotated by an angle around the origin. BrieflyR(S)
meansR (S, a = 0). Let Ry,in (S) be the rectangle that minimisasea(R.(S, a)).
This can be calculated in linear time with respect to the nemal vertices ofS by
first computing the convex hull followed by Toussaint’s [58dtating orthogonal
calipers” method.

12.2.1 Measuring Rectangularity

There are a few shape descriptors that can be estimate®qptS). For example, a
standard approach to measure the rectangularity of a padygbapes is to compare

S andR,,in(S). Of course, the shapg is said to be a perfectly rectangular shape
(i.e. Sisarectangle) ifand only i§ = R.,in (S). Such a trivial observation suggests
that rectangularity can be estimated by:

area(95)
area(Ryin(5))’

Also, the orientation ofS can be defined by the orientation Bf,,,;,(S), or more
precisely, the orientation o§ can be defined by the orientation of the longer edge
of Ruin(S). Finally, the elongation of can be derived fronR i, (S), where the
elongation ofS is estimated by the ratio of the lengths of the orthogonakedyf
Rm111<S)~

Analogous measures can be constructed using the minimumeger bounding
rectangle instead of the minimum area bounding rectandgleo@se, in both cases
where the bounding rectangles are used a high sensitivityetboundary defect is
expected.

12.2.2 Measuring Convexity

Curiously, the minimum area bounding rectangle can alsosied to measure con-
vexity [70]. Indeed, a trivial observation is that the tatam of projections of all the
edges of a given shapgonto the coordinate axes is equal to the Euclidean perimeter
of R(.S), which will be denoted b§P,(R.(S)). The sum of projections of all the edges
of S onto coordinate axes can be writterfag.S), whereP; (S) means the perimeter
of S in the sense of; distance (sometimes called the “city block distance”), and
we have

P1(S, ) = P2(R(S,a)) (12.1)

for every convex polygors and alla € [0,27) (P1(S, «) denotes thé;, perimeter
of S after rotation for an angle).

The equality (12.1) could be satisfied for some non conveyguois, as well
(see Fig. 12.1), but a deeper observation (see [70]) shaatddhany non convex
polygonal shapé& there is an angle: such that the strict inequality

P1(S, o) > P2(R(S, ) (12.2)
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holds.

y y RufP)
R(P)

A Roy®)

@ (b)

Fig. 121 (a) SinceS is convex theriP; (S) = P2(R(S)). (b) If 2 andy are chosen
to be the coordinate axes théh (R(S)) = P1(S). SinceS is not convex there is another
choice of the coordinate axes, sagndv, such that the strictinequalifs (R(S)) < P1(S)
holds.

Combining (12.1) and (12.2) the following theorem that gigeuseful character-
ization of convex polygons can be derived.

Theorem 1 ([70]) A polygons is convex if and only if
P1(S, ) = P2(R(S,a))
holds for alla € [0, 27).

Taking into account the previous discussion, the inequdlif.2), and Theo-
rem 1 the following convexity measu€& S) for a given polygonal shap§ is very
reasonable:

o Pa(R(S,a))
ael0,27] 73'1(5, Oé) '

The convexity measure defined as above has several degraplerties:

c(s) = (12.3)

e The estimated convexity is always a number fr@ml];

e The estimated convexity isif and only if the measured shape is convex;
e There are shapes whose estimated convexity is arbitrasg ¢bd);

e The new convexity measure is invariant under similaritpsfarmations.

The minimum of the functiow thatis used to estimate the convexity of
1 , &

a given polygonal shapgcannot be given in a “closed” form. Also, itis obvious that

the computation o 27?2;5’0[0;)) for a big enough number of uniformly distributed
1 )
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different values ofx € [0, 2] would lead to an estimate 6fS) within an arbitrary

required precision. But a result from [70] shows that thera deterministic, very
efficient algorithm that enables the exact computatio@i(6f). That is an advantage
Po(R(S, @)

1 (57 CM)
of O(n) different, precisely defined, values afand take the minimum from the
computed valuesi(denotes the number of vertices 9.

1.0000 0.9757 0.8648 0.8475

R 4N

0.7894 0.6729 0.5617 0.5503

of the method. It turned out that it is enough to com for a number

W

* € &

0.5422 0.4997 0.4672 0.4053

Fig. 12.2 Shapes ranked by ti{tconvexity measure.

C(S) is a boundary based convexity measure that implies a higditséty to the
boundary defects. In the majority of computer vision tasies tobustness (rather
than the sensitivity) is a preferred property, but in highgision tasks the priority
has to be given to the sensitivity.

Several shapes with their measured convexity values (theegdy measure
is used) are presented in Fig. 12.2. Each shgerotated such that the function
P2(R(S, )

P1(S, a)
is convex leading to the measured convexity equdl.t8ince the used measufe
is boundary based, boundary defects are strongly penalEedexample, the first
shape in the second row, the last shape in the second rowatadt shape in the third
row all have measured convexity values that strongly deperttie intrusions. Also
note that there are a variety of different shape convexitgsuees (e.g. [5, 42, 58])
including both boundary and area based ones.

reaches the minimum. The first shape (the first shape in thedin3
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12.2.3 Measuring Rectilinearity

In addition to the above we give a sketch of two recently idiced shape descriptors
with their measures that also use optimal (in a differensegbounding rectangles.
We start with rectilinearity. This shape measure has marsgipte applications
such as shape partitioning, shape from contour, shapevatrobject classification,
image segmentation, skew correction, deprojection obhphotographs, and scale
selection—see [69, 55]. Another application is the deteaif buildings from satellite
images. The assumption that extracted polygonal areasewhiasior angles belong
to{m/2,3m/2} very likely correspond to building footprints on satelliteages seems
to be reasonable. Consequently, a shape descriptor thad wetect how much
an extracted region differs from a polygonal area with ioteangles belonging
to {r/2,3w/2}, could be helpful in detecting buildings on satellite imageee
Fig. 12.3).

L

RN

@ (b)

Fig. 12.3 (@) The presented rectilinear polygons correspond to building footpi{b)sThe
presented (non-polygonal) shapes correspond to building footprihtdy are not rectilinear
polygons.

Thus, a shape with interior angles belongingtg2, 37 /2} is named a “rectilinear
shape”, while a shape descriptor that measures the degrekith shape can be
described as a rectilinear one is named “shape rectilitygait has turned out that
the following two quantities

_ 4 Pa(S) om
RalS) ==~ (H;> Pri(S. o) 4) (12.4)
o ™ ) - P1(S,C¥) 72\/5
722(5)77”72\/i (ag[loa}%) V2P (5. 0) W) (12.5)

are appropriate to be used as rectilinearity measures. [Eetaled explanation
see [69]. It is obvious that botR; andR, are boundary based shape descriptors.
An area based rectilinear descriptor is not defined yet. Aameably good area based
rectilinearity measure would be very useful as a buildingdiéon tool when working
with low quality images.

The following desirable properties of rectilinearity messR, andR- hold (for
details see [55, 69]):
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Measured rectilinearity values are numbers frign|;

A polygon S has a measured rectilinearity equal itaf and only if S is
rectilinear;

For eache > 0 there is a polygon whose measured rectilinearity belongs to
(0,¢);

Measured rectilinearities are invariant under similatignsformations.

“EE N LD
VI e\ O

@ R

LATHE
VIm3Ise

Fig. 12.4 Shapes ranked by rectilinearity measufésandR.

AlthoughR; andR, are derived from the same source and give similar results,
they are indeed different and they could lead to differeapstranking (with respect
to the measured rectilinearity). For an illustration seg F.4; shapes presented in
Fig 12.4(a) are ranked with respect®q while the shapes presented in Fig 12.4(b)
are ranked with respect ®..
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12.2.4 Measuring Orientability

To close this section on related shape measures based odibhguactangles we
discuss “shape orientability” as a shape descriptor thatilshindicate the degree
to which a shape has a distinct (but not necessarily uniguefptation. This topic
was recently investigated by the authors [71]. The definitid the orientability
measure uses two optimal bounding rectangles. One of théme isiinimum area
rectangleR i, (S) thatinscribes the measured sh&pehile another is the rectangle
Rnax () that maximizearea(R(S, «)). A modification of Toussaint’s [59] rotating
orthogonal calipers method can be used for an efficient ctetipn of Ryax(S).
The orientabilityD(.S) of a given shapé is defined as

Rmin (S)

D(S)=1- 7Rmax(5).

(12.6)

Defined as above, the shape orientability has the followasireble properties:
e D(S) €[0,1) for any shapes;
e A circle has the measured orientability equadto
¢ No polygonal shape has the measured orientability equal to

e The measured orientability is invariant with respect toikirty transforma-
tions.

Since bottR i, (S) andR..,.x(S) are easily computable, it follows that the shape
orientability of a given polygonal shaggis also easy to compute. For more details
we refer to [71].

Note that a trivial approach could be to measure shape ahdity by the degree
of elongation of the considered shape. Indeed, it seememabke to expect that the
more elongated a shape the more distinct its orientation.ifBuch an approach is
used then problems arise with many-fold symmetric shapegescribed later in sec-
tions 12.5.1 and 12.5.2. However, measuring shape oridittddy the new measure
D(S) is possible in the case of such many-fold symmetric shapedemonstrated
in Fig. 12.5. This figure gives several trademark examplessetorientability is
computed byD(S). As expected, elongated shapes are considered to be the most
orientable. Note however, that the measir€S) is also capable of distinguish-
ing different degrees of orientability for several symrteshapes that have similar
compactness, such as the first and last examples in the top row

123 FURTHER BOUNDING SHAPES

The approach taken to measure rectangularity (subse@i@nl) can readily also be
applied to other shape measures, as long as the boundingtr@oprimitive can be

computed reasonably efficiently. However, in some casesribt appropriate; for
instance sigmoidality (see section 12.4) is determinecerbgthe shape of its medial
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Fig. 125 Trademarks ranked by orientability usid@(S). The bounding rectangles
Rnin(S) andR,.x(.5) are displayed for each measured sh&pe

axis than its outline, while other measures such as contplhd] or elongation (see
section 12.5.2) are not defined with respect to any geomgiriative.

A simple and common use of such a method is to measure copvixite denote
the convex hull of polygors by CH(S) then the standard convexity measure is
defined as

area(95)
area(CH(S))"

The computation time of the convex hull of a simple polygolirisar in the number
of its vertices [36] and so the overall computational comipyeof the measure is
linear.

A perimeter based version can be used in place of the ared besgsure:

Ci(9) =

¢, — P2(CH(5))
2T UP(S)

It was straightforward to apply the same approach to compigagularity [51].

Moreover, since linear time (wrt. number of polygon versicalgorithms are avail-
able to determine the minimum area bounding triangle [37 tt#8 measure could
be computed efficiently. Many other similar measures aresiptess and we note
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that there are also linear time algorithms available to fiodrigling circles [18] and
bounding ellipses [19] that can be used for estimating tarity and ellipticity.

A more rigorous test of shape is, given a realisation of aalideape, to consider
fluctuations in both directions, i.e. intrusions and prsions. Thus, in the field of
metrology there is an ANSII standard for measuring rounsindgch requires finding
the minimum width annulus to the data. This involves detamg the inscribing
and circumscribing circles which have a common centre amihnise the difference
in their radii. Although the exact solution is computatibpaxpensive Chan [8]
presented a®(n + ¢~2) algorithm to find an approximate solution that is within a
(1 + ¢)-factor of optimality, where the polygon containsvertices and > 0 is an
input parameter. We note that in general inscribed shagasiare computationally
expensive to compute than their equivalent circumscribiErgions (even when the
two are fitted independently). For instance the best cualgetrithm for determining
the maximum area empty (i.e. inscribed) rectangle tékgs’) time [10] compared
to the linear time algorithm for the minimum area boundingtaagle. Even more
extreme is the convex skull algorithm; the optimal algarituns inO(n") time [9]
compared again to a linear time algorithm for the convex. hull

124 FITTING SHAPES

An obvious scheme for a general class of shape measures tistshfape model to
the data, and use the goodness of fit as the desired shapereneHsere is of course
great scope in terms of which fitting procedure is performédch error measure is
used, and the choice of the normalisation of the error of fit.

12.4.1 EllipseFitting

For instance, to fit ellipses, Rosin [48] used the Least MediaSquares (LMedS)
approach which is robust to outliers, and enables the ellipbe fitted reliably even
in the presence of outliers. The LMedS enables outliers teefeeted, and then a
more accurate (and ellipse-specific) least squares fit tantlees was found [15].
Calculating the shortest distance from each data pointa@lipse requires solving
a quartic equation, and so the distances were approximaied the orthogonal
conic distance approximation method [47]. The averagecqamated error over the
dataE’ was combined with the region’s argato make the ellipticity measure scale

invariant [51]:
(47
VA)

For fitting triangles a different approach was taken. Thénagitthree line polygonal
approximation that minimised the total absolute error eoghlygon was found using

12.4.2 TriangleFitting
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dynamic programming. The average error was then normadiseabove to give a
triangularity measure [51].
12.4.3 Rectangle Fitting

An alternative approach to measure rectangularity [5Ihftbe one introduced in
section 12.2 is to iteratively fit a rectanglto S by maximising the functional

1 area(R\ S) + area(S\ R)

area(S N R) (12.7)

based on the two set differences betwéeand.S normalised by the union a® and

S. This provides a trade-off between forcing the rectangledotain most of the
data while keeping the rectangle as small as possible, asrdgrated in Fig. 12.6.
Each iteration can be performed@(n logn) time [12], wheren is the number of

vertices.
(@) (b)

Fig. 126 The rectangle shown in (a) was fitted according to (12.7) as compartte to
minimum bounding rectangle shown in (b).

12.4.4 Sigmoid Fitting

To measure sigmoidality (i.e. how much a region is S-shapeddral methods were
developed that analyse a single centreline curve which wtasated from the region
by smoothing the region until the skeleton (obtained by diyning algorithm) is
non-branching. The centreline is then rotated so that itejpal axis lies along the
x-axis. Fischer and Bunke [14] fitted a cubic polynomiat ax? +bx? +cx+d and
classified the shape into linear, C-shaped, and sigmoidetdsased on the coefficient
values. A modified version specifically designed to producly @ sigmoidality
measure [52] fitted the symmetric curve givenyoy: ax> + bx + c. The correlation
coefficientp was used to measure the quality of fit between the data andhgled
model. Inverse correlation was not expected, and so the vedis truncated at zero.
Rather than fit models directly to the coordinates othervedrdata can be used
instead. The following approach to compute sigmoidalitgduthe tangent angle
which was modelled by a Generalised Gaussian distribus2h{ see Fig. 12.7. The
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Fig.12.7 Thetangentangle of the handwritten digit ‘5’ is overlaid with the best fitdbalised
Gaussian (dashed) — the good fit yields a high sigmoidality measure.

probability density function is given by

vn(v,9) .ol

@) = 30 )

wherel'(x) is the gamma functior, is the standard deviation is a shape parameter
controlling the peakiness of the distribution (values: 1 andv = 2 correspond to
Laplacian and Gaussian densities), and the following isashrggfunction

113/
(v 0) = A T )

Mallat's method [34] for estimating the parameters was @ygdl. First the mean
absolute value and variance of the datare matched to the Generalised Gaussian.
If my=L3" |z;] andmy = £ 377 | 22 then

(3

Fla) = —— 29 |
I(1/a)T'(3/c)

In practise, values of'(«) are precomputed, and the inverse function determined by
a look-up table with linear interpolation. Finally, the tgamt angle is scaled so that
the area under the curve sums to one. It was found that rdtherdalculating the
measure as the correlation coefficient better results waered by taking the area
of intersectionA of the curves as an indication of the error of fit. An approxina
normalisation was found by experimentatiomasx(2A4 — 1,0).

where
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12.45 Using Circleand Ellipse Fits

Koprnicky et al. [27] fitted two model shape&/ (a circle and ellipse) to the dafa
and for each considered four different error measures: uker difference

area(S N M)
area(S) '

the inner difference .
area(S N M)

area(S) ’

as well as the sum and difference of the above. This provideddifferent measures,
from which the first three can be considered as circularity @fhipticity measures,
focussing on the different aspects of the errors.

125 MOMENTS

Moments are widely used in shape analysis tasks. Shape lmatitm, shape
encoding (characterization), shape matching and shapéfidation are just some
examples where moments techniques are successfully dpplie be precise, by
“shape moments” we mean geometric moments. The geometrieemion,, ,(.S) of
a given planar shapg is defined by

My q(S) = // 2Py? dxdy.
5

Inreal image processing applications we are working wisieidite data resulting from

a particular digitization process applied to real datahirhost typical situation real

objects are replaced with a set of pixels whose centres gébathe considered shape.
In such a case the exact computation of geometric moments fgossible and each

used momentn,, ,(S) is usually replaced with its discrete analogyg,(S) which

is defined as
tip,q(S) = Z P* 5,
(i,§)€SNZ2

whereZ means the set of integers. The ordemaf ,(S) is said to bep + ¢. Note
that the zeroth order moment, ((.S) of a shapes coincides with the area .

1251 Shape Normalization: Gravity Centre and Orientation

Shape normalization is usually an initial step in image ysialtasks or a part of
data preprocessing. It is important to provide an efficiertmalization because a
significant error in this early stage of image analysis wdeidl to a large cumulative
error at the end of processing.
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Shape normalization starts with the computation of imagstipm. A common
approach is that the shape position is determined by itstgreentre (i.e. centre of
mass or, simply, centroid) of a given shape. Formally, foiverg planar shapé&
its gravity centrg(z.(S),y.(S)) is defined as a function of the shape area (i.e., the
zeroth order moment of the shape) and the first order moments

_ ((m1,0(5) mo,(S)
(c(9),9c(8)) = (moﬁ(s)’ mz,;(5)> '

Computation of shape orientation is another step in theeshapmalization pro-
cedure which is computed using moments. The orientatiomsébe a very natural
feature for many shapes, although obviously there are sbayes that do not have
a distinct orientation. Many rotationally symmetric shaee shapes that do not
have a unique orientation while the circular disc is a sh&pé does not have any
specific orientation at all. The standard approach defireeshipe orientation by a
line that minimizes the integral of the squared distancgsoaits (belonging to the
shape) to this line. Such aline is also known as the “axis@fdéhst second moment
of inertia”. If »(x, y, d, p) denotes the perpendicular distance from the painy) to
the line given in the form

(12.8)

rcosd —ysind = p

then the integral that should be minimized is

I((S, P, S) = //TQ("E,Z,(S,p)d(Edy.
S

Elementary mathematics shows that the line which minimizgsp, S) passes
through the centroidz.(S),y.(S)) of S and consequently we can set= 0.
Thus, the problem of orientation of a given shapis transformed to the problem of
computing the anglé for which the integral

1(0,5) = //(—x sin d + y cos §)%dadx (12.9)
S

reaches the minimum. Finally, if we introduce central geimenomentsm,, ,(S)
defined as usual

iy o(S) / / (2 — 7e(8))(y — y(S))2dady
S

then the functior? (4, S) can be written as
1(8,S) = M2,0(S)(sin 0)* — 271 1 (S) sin 6 cos § + Mg 2(S)(cos §)*  (12.10)

i.e. asapolynomial inos § andsin 6 whose coefficients are the second order moments
of S. The angle for which I(9, S) reaches its maximum defines the orientatio§ of
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Such an anglé is easy to compute and it can be derived that the requdisatisfies
the equation
Sln(25) 2m1 1(8)
= : . 12.11
cos(28)  Ma,0(S) — Mmo2(S) ( )

It is worth mentioning that if working in discrete space, iiecontinuous shapes
are replaced with their digitizations, then real moments&ha be replaced with their
discrete analogues. For example, the orientation of dissteape that is the result of
digitization of S is defined as a solution of the following optimization prahle

i sind — jcosd)? b .
56%{3@{(”2 (isind — j cos ) }

)ESNZ?2

The angley which is a solution of the above problem satisfies the egnatio

sin(24) _ 2111 1(5)
cos(20)  Tigo(S) — T 2(S)

which is an analogue to (12.11).

So, the shape orientation defined by the axis of the leashdanoment of inertia
is well motivated and easy to compute in both continuous asatete versions. As
expected, there are some situations when the method dog#&eany answer as to
what the shape orientation should be. Such situations, emher standard method
cannot be applied are characterised by

1(6,S) = constant. (12.12)

There are many regular and irregular shapes that satisf$Z1.2The result from [60]
says that (12.12) holds for alV-fold rotationally symmetric shapes witN > 2,
where N-fold rotationally symmetric shapes are such shapes whieldantical to
themselves after being rotated through any multipl2ofN.

In order to expand the class of shapes with a computabletatien Tsai and
Chou [60] suggested a use of the so calledh order central momentsy (9, .S). For
a discrete shap# those moments are defined by

In(9,8) = Z (—zsind +ycosd)N (12.13)
(z,y)€S

assuming that the centroid 6fis coincident with the origin.

Now, the shape orientation is defined by the arigfer which I (J,.S) reaches
the minimum. ForN = 2 we have the standard method. Note tha{d, S) is a
polynomial incos § andsin 6 while polynomial coefficients are central moments of
S having the order less or equal 2

A benefit from this redefined shape orientation is that théwatan be applied to
awider class of shapes. For example, since a squarefisld rotationally symmetric
shape the standard method does not worlf, (8, .S) is used then the square can be
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oriented. A disadvantage is that there is not a closed fafad (12.11)) that gives
for which Iy (6, S) reaches the minimum for an arbitrary sheh&hus, a numerical
computation has to be applied in order to compute shapetatien in the modified
sense.

Fig. 12.8 displays some shapes whose orientation is comfnyteapplying the
standard methodN = 2) and by applying the modified method wiffi = 4 and
N = 8. Shapeq1), (2), and(3) are not symmetric, but they have a very distinct
orientation. Because of that all three measured oriemsitave almost identical.
Shapeg4), (5), and(6) have exactly one axis of symmetry and consequently their
orientation is well determined. That is the reason why a#éétcomputed orientations
coincide. The small variation in the case of the bull sketttape(5)) is caused by
the fact that the sketch contains a relatively small numbigblack) pixels, and
consequently the digitization error has a large influenceap8s(7), (8), (9), and
(10) do not have a distinct orientation. That explains the viansin the computed
orientations. For shapdg41) and (12) the standard method does not work. The
presented regular triangle iSgold rotationally symmetric shape and its orientation
cannot be computed faV = 4, as well. ForN = 8 the computed orientation is
150° which is very reasonable. This is the direction of one of §rammetry axes. Of
course, the modified method (in the caseN\ot= 8) gives the angles = 270° and
d = 30° as the minimum of the functiofg (4, .S) and those angles can be also taken
as the orientation of the presented triangle. The last sisapd-fold rotationally
symmetric shape whose orientation cannot be computed tstahdard method.

12.5.2 ShapeElongation

Shape elongation is another shape descriptor with a cl¢aitive meaning. A

commonly used measure of elongatedness uses the centralntsoamd is computed
as the ratio of the maximum af(é,.S) and the minimum off (4, S); i.e. shape

elongation is measured as ([38])

Ting (S) + g2 (S) + /(Tan(S) — g2 (5))? + 47111 (5)?
Ting (S) + g2 (S) — \/(Ta0(S) — T2 (S))? + 47111 (5)?

which can be simplified and reformulated as

V (Tiag (S) — g2 (5))? + 471, (5)?
Tigo(S) + Tg2(S)

to provide a measure in the range1].

Similarly as in the previous subsection some problems avisen working with
shapes satisfying(d, S) = constant. All such shapes have the same measured
elongation equal taé. Rather, it is more reasonable that all the reg@taigons have
the same measured elongation. It seems natural that thgagion of regulaRn-
gons decreasesiif increases. Partially, the problem can be avoided if highdero
moments of inertia are used. A possibility (see [68]) is tbraethe elongation of a

, (12.14)
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(N = 2) 87° (N = 2) 133° (N = 2) 96° (N = 2) 90°

(N = 4) 88° (N = 4) 133° (N = 4) 95° (N = 4) 90°

(N = 8) 88° (N = 8) 133° (N = 8) 93° (N = 8) 90°
1) (2 ©) 4

(N = 2) 90° (N = 2) 90° (N = 2) 165° (N =2) 114°

(N = 4) 90° (N = 4) 94° (N = 4) 172° (N = 4) 131°

(N = 8) 90° (N = 8) 92° (N =8) 177° (N = 8)31°
(5) (6) ) (8)

(N = 2)153° (N = 2) 48° (N =2)— (N =2) —-

(N = 4) 158° (N = 4) 56° (N =4) (N = 4) 44°

(N = 8) 167° (N = 8) 63° (N = 8) 150° (N = 8) 42°
©) (10) (11) (12)

Fig. 12.8 Computed orientation of the presented shapesWor= 2, N = 4, andN = 8
are given (in degrees).

given shapes as

max{In(d,5)|d €[0,2m)}

min{Iy(4,5) | d € [0,2m)} "
Again, an advantage of the modified definition of the shapentation is that a
smaller class of shapes would have the measured elongatical ® 1. Such the
minimum possible measured elongation should be reservelddaircular disc only.
On the other hand, foN > 2 there is no closed formula (like (12.14)) that can be
used for immediate computation of the shape elongation eMgpensive numerical

(12.15)
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algorithms have to be applied. For more details about ekimgaf many-fold
rotationally symmetric shapes see [68].

12.5.3 Other Shape Measures

A simple scheme for measuring rectangularity [49] consdée moments of a

rectangle (dimensions x b) centred at the origin and aligned with the axes. The
313

a’b .
moments arengy = ab andmsy = T and so the quantity

R=144 x 2

Moo
is invariant for rectangles of variable aspect ratio andisgaand can be normalised
as
R ifR<1

Ry=4q 1 herwi
— otherwise.
R

To add invariance to rotation and translation the data igfommalised in the standard
way by moving its centroid to the origin and orienting itsrmipal axis to lie along
the X-axis.

A straightforward scheme to measure similarity to shapeh si$ triangles and
ellipses which do not change their category of shape undfieeafansformations is
to use affine moment invariants [51]. The simplest versiaio isharacterise shape
using just the first, lowest order affine moment invariani [16

R — =2
MogMo2 — My

)
Moo

I =

This has the advantage that it less sensitive to noise tledrigher order moments.
The moments for the unit radius circle are

1 Vr2—z2
Hpg = / / xPyldydx
—1 —/r2—g2

leading to the value of its invariant ds =
this then provides a measure of ellipticity

5 - When normalised appropriately

16720 if I < 1
E; =

——— otherwise
16721,

which ranges ovel0, 1], peaking at 1 for a perfect ellipse. The same approach was

applied to triangles, all of which have the valilig = 1%8’ and the triangularity
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measure is _
1085 if Iy < 5
Tr =
otherwise

1081,

Of course, using a single moment invariant is not very speafd so the above two
measures will sometimes incorrectly assign high elliptiar triangularity values
to some other non-elliptical or triangular shapes. Thislmamemedied using more
moment values, either in the above framework, or as destribgt.

Voss and 813e describe a method for fitting geometric primitives byntiethod of
moments [63]. The data is normalised into a (if possible uajganonical frame, that
is generally defined as the simplest instance of each pvientiyipe, by applying an
affine transformation. Applying the inverse transformatio the primitive produces
the fitted primitive. For example, for an ellipse they take tmit circle as the
canonical form, and the circle in the canonical frame is ¢farmed back to an
ellipse, thereby providing an ellipse fit to the data. Forpleposes of generating
shape measures the inverse transformation is not necessé#ng measures can be
calculated in the canonical frame. This is done by compuhedlifferences between
the normalised moments of the data() and the moments of the canonical primitive
(m;;) where only the moments not used to determine the normialisate included:

—1

1+ Z (m;J - mij)Q

i+j<4

The above approach method was applied in this manner by RaEjrio generate
measures of ellipticity and triangularity. Measuring esgjularity can be done
in the same way, except that for fitting rectangles the proeeds modified to
apply a similarity transformation rather than an affine sfarmation. After this
transformation the rectangle’s aspect ratio remains taeberohined, and this is done
by a one-dimensional optimisation using the higher ordemerats (up to fourth
order).

We note that the above methods can all compute the momehes éibm the
polygon boundary directly (line moments) [57] or else carrape on the rasterized
set of pixels inside the polygon (region) [33].

126 FOURIER DESCRIPTORS

Like moments, Fourier descriptors are a standard meangdgenting shape. This
involves taking a Fourier expansion of the boundary fumgctighich itself may be
described in a variety of ways. If the boundary of the reg®given by the points
(zj,y;); j = 1...N then one approach is to represent the coordinates by complex
numbers:; = x; +4y; [21]. Other possibilities are to represent the boundaryelay r

1D functions versus arc length such as tangent angle [6@Jdius from the centroid.
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Taking the representatian = «;+iy; and applying the discrete Fourier transform
leads to the complex coefficients which make up the desespto

N-1
1
Fp, = ap + by, = N Z Zm exp (—i2rmk/N).

m=0

Often just the magnitude is usegd = \/aﬁ + b?, and sincer; indicates the size of
the region it can be used to make the descriptors scale amtati;, = r /7.

For a study of sand particles Bowmatal.[4] used individual Fourier descriptors
to describe specific aspects of shape, eg.3, w_o, w_; andw,; to measure
respectively squareness, triangularity, elongation, asyimmetry. However, this
approach is rather crude. A modification [53] to make the mesamore specific
includes the relevant harmonics and also takes into actbemeémaining harmonics
which do not contribute to squareness:

(w,3+w,7+w,11+...)/ Z W; .
Vig¢{—1,0,1}

Kakarala [25] uses the same boundary representation anasi¢he following
expression for the Fourier expansion of the boundary curgat

N
Z m [(m + n)QTmFm+n + (m— n)szFm,n
m=—N

K, =

N | =

whereF is the complex conjugate df.
He shows that for a convex contour

2N
Ko>2) Ky

n=1

from which the following convexity shape measure is derived

2N
Ko — 2Zn=1 |K7L|
2N :
Zn:—QN |K’fl|

Another measure based on curvature is “bending energy”wbimsiders the
analogue of the amount of energy required to deform a phiysidgd65]. If a circle
(which has minimum bending energy) is considered to be thplsist possible shape,
then bending energy can be interpreted as a measure of shrapéegity or deviation
from circularity.
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The normalised energy is the summed squared curvaturesvaloeg the bound-
ary, which can be expressed in the Fourier domain as

N

S (22 (el + o)

m=—N

although in practice the authors performed the computatidime spatial domain.
When the boundary is represented instead by the radius umati'roughness
coefficient” can be defined as

[(N41)/2]-1

1
5 Z (af +b7).

n=1

This shape measure is effectively the mean squared deviattithe radius function
from a circle of equal area [26].

12.7 CONCLUSIONS

This chapter has described several approaches for corgmiiepe measures, and
has showed how each of these can then be applied to generatiety wf specific
shape measures such as convexity, rectangularity, etc.1EZig illustrates some of
the geometric primitives that have been inscribed, ciraribsd, or otherwise fitted
to example data, and which are then used to generate shapane®a

Our survey is not complete, as there exist some methodalagithe literature
that we have not covered. Here, for instanicégrmation Theoryhas been used to
measure convexity [41] and complexity [40, 44, 1P}ojectionsare a common tool
in image processing, and in the context of the Radon tramsf@ve also been used
to compute convexity, elongation, and angularity shapesures [30]; a measure of
triangularity was also based on projections [51]. Only afariention has been made
to the issues of digitisation, but it is important to notet s CQan have a significant
effect. For instance, the popular compactness meas@r&ag;eig) in the continuous
domain is minimised by a circle but this is not true when wogkiwith digital
data [45]. Therefore, some measures explicitly considedibitisation process. e.g.
for convexity [46], digital compactness [7, 3] and otherhaneasures [20].

Given these methodologies it should be reasonably stfaigard for the reader
to construct new shape measures as necessary. For ingtansigler an application
requiring a “pentagonality” measure, i.e. the similarifyaopolygon to a regular
pentagon. Considering the various methods discussedsithiaipter, several seem
to be readily applicable:

e a measure could be generated from the polygon’s boundintagem, see
section 12.3,
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bRebsee s
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min-R  max-R robust-R circ-C insc-C voss-C voss-E voss-R voss-T

Fig. 12.9 Geometric primitives fitted to shapes. min-R: minimum area rectangle; Rnax-
maximum area rectangle; robust-R: best fit rectangle — eqn (12ré}Cc circumscribing
circle; insc-C: inscribed circle; voss-C, voss-E, voss-R, vossrftle, ellipse, rectangle and
triangle fitted by Voss andif®Re’s moment based method [63]. These primitives are used to
generate some of the shape measures described in this chapter.

e once a pentagon is fitted to the polygon’s coordinates varshape measures
can be produced, see section 12.4,

e rather than directly processing the polygon’s coordindkes histogram of
boundary tangents could be used instead, and it would higlstiarward to fit
fit five regular peaks and then compute a shape measure froemrtireof fit,
see again section 12.4,

e the two methods for generating shape measures from momgntssis and
SlRRe [63] and Rosin [51] could readily be applied, see sedtB.3,

o the Fourier descriptor method for calculating triangujein section 12.6 could
also be readily adapted to computing pentagonality.

The natural question is, which is the best shape measure?e Wigidsures can
be rated in terms of their computational efficiency, sevigjtio noise, invariance to
transformations, and robustness to occlusion, ultimateyr effectiveness depends
on their application. For example, whereas for one apjdinateliability in the
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presence of noise may be vital, for another sensitivity bilswariations in shape may
be more important. It should also be noted that, while thezevany possible shape
measures already available in the literature, and many thatean be designed, they
are not all independent. Some analysis on this topic wagdawut by Hentschel and

Page [23] who computed the correlations between many simiéasures as well as
determining the most effective for the specific task of powsheticle analysis.
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