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Abstract

Despite significant advancements in 3D hand pose estimation, it still faces challenges due
to self-occlusion and complex backgrounds. To tackle those issues, we propose a CLIP-
based Regressor for Hand Pose Estimation and Mesh Recovery (CLIP-Hand) from a single
RGB image. Specifically, we propose an innovative method that combines high-resolution
feature aggregation with contrastive language-image pre-trained model (CLIP) to enhance
feature representations through language-guided visual prompts. Our approach utilizes a
multi-layer Transformer encoder-decoder module to improve the prediction accuracy of
hand meshing and joint points. To boost the performance, a predefined 3D joint module
and a text dataset are proposed to augment the training data and improve the model’s
generalization ability across different scenarios. Extensive experiments on datasets such
as FreiHAND, RHD, and Dexter+Object demonstrate the effectiveness of our approach,
showing improved performance in terms of accuracy and robustness compared to existing
methods. The source code and data will be released once the paper is accepted.
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1 Introduction

With the rapid advancement of computer vision and machine learning, 3D hand pose estima-
tion has emerged as a pivotal technology across several domains, including human-computer
interaction (HCI) [1–3], virtual reality (VR) [4–6], augmented reality (AR) [7–9], and robotics
[10–12]. The primary goal of hand pose estimation is to accurately track and interpret the 3D
position and orientation of the hand, enabling systems to understand and simulate complex
hand movements. This technology not only offers the potential to enhance user experiences
in digital environments but also promises transformative benefits across diverse areas. For
example, it can improve accessibility for individuals with disabilities, enabling more intuitive
interaction with digital devices and assistive technologies. Furthermore, 3D hand pose estima-
tion can enhance the capabilities of robotic systems, enabling more precise manipulation and
interaction with the physical world. As such, this field holds vast potential with far-reaching
social and technological implications.
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Traditional 2D hand pose recognition methods are limited by viewing angles and lighting
conditions, which make accurate recognition challenging. 3D hand pose recognition technol-
ogy overcomes these limitations by using depth cameras, structured light scanning, and other
devices that are able to capture hand depth information from multiple angles. Gesture pose
estimation methods usually rely on depth maps or RGB images. While depth-map-based meth-
ods tend to achieve high accuracy in hand pose estimation, they are often constrained by
factors such as the limited depth camera range and challenges in handling complex or dynamic
environments. In contrast, RGB-based methods are more flexible and can process images in
real time, but they may struggle with accuracy, particularly in occluded or low-light condi-
tions. In recent years, breakthroughs in deep learning [13] have provided strong algorithmic
support for 3D hand pose recognition, significantly improving its accuracy and robustness.

Despite its advancements, 3D hand pose estimation still faces several significant challenges.
One key issue is the complexity and diversity of human hands, which necessitates large, labeled
datasets for effective model training. Additionally, the dynamic nature of real-world environ-
ments demands high real-time performance, putting pressure on the algorithms to respond
quickly to changes. Illumination variability and occlusion further complicate the task, as per-
formance can degrade under different lighting conditions or when parts of the hand are hidden.
Another ongoing challenge is adapting 3D hand pose estimation for practical applications and
ensuring its generalization across diverse scenarios, thereby making it robust across diverse
use cases and environments.

Recently, the evolution of the Transformer architecture in natural language processing has
driven the introduction of the Vision Transformer (ViT) [14] into computer vision. This ground-
breaking development has opened up new perspectives and approaches in computer vision
research. Transformer-based models have since been applied to a wide range of computer vision
tasks, including object detection, semantic segmentation, and video understanding, achieving
impressive results. This trend has also been extended to tasks such as hand pose estimation
and mesh reconstruction, yielding remarkable outcomes [15, 16]. One of the pioneering works,
METRO [15], demonstrates the potential of Transformer-based architectures for human mesh
recovery, showing significant advantages over traditional methods. However, METRO demands
substantial computational resources. To address this challenge, FastMETRO [16] introduces
a novel Transformer encoder-decoder architecture that mitigates bottlenecks by disentangling
the interactions. While Transformer-based approaches have shown promising results, they still
face challenges in effectively addressing tasks such as hand pose estimation and mesh recovery.

Fig. 1 A simple game interaction scenario: (a) A scene where the linear blend skinning model of the hand
is driven by the predicted 3D joint positions from the video, interacting with the object at a low frame rate
(FPS). (b) The same scene at a high FPS. At low FPS, inaccurate predictions of 3D joint positions for certain
frames can lead to abnormal hand deformations when driving the linear blend skinning model, as demonstrated
in the red-circled example, where the finger exhibits abnormal deformation. Best viewed in color.

In this paper, we propose an innovative 3D gesture pose estimation method, CLIP-
Hand, that combines high-resolution feature aggregation with CLIP [17] to enhance feature
representations via language-guided visual prompts. The proposed CLIP-hand consists of
a High-resolution Feature Aggregation Module (HFA) for extracting high-resolution feature
maps, a Multi-scale Heatmap Fusion Module (MHF) for learning vertices, joint heatmaps, and

2



attention map features, as well as a Multi-layer Transformer Encoder-Decoder Fusing Atten-
tion Module (MTED) for regressing 3D hand vertices and joints, and CLIP Module (CM) to
obtain more plausible feature representation. While many existing hand pose estimation meth-
ods achieve competitive results without CLIP, most of them rely heavily on low-level visual
cues such as texture, color, and edges. These features are sensitive to occlusion, lighting, and
background variations, which often lead to performance degradation in real-world conditions.
In contrast, CLIP provides semantically aligned image–text representations that capture high-
level visual concepts rather than pixel-level details. By integrating CLIP into our framework,
the model can focus on meaningful regions (i.e., the hand) and suppress irrelevant background
information. This design enhances robustness against occlusion and background clutter, while
also improving zero-shot generalization across unseen domains and subjects. To address the
challenges posed by diverse poses and varying correlations between joints in 3D hand pose
estimation, we propose the integration of a predefined 3D joint (PJ) module, which serves to
initialize the gesture pose, providing a structured starting point that can enhance the model’s
performance. We evaluate the proposed CLIP-Hand on widely used datasets, i.e., FreiHAND,
RHD, and Dexter+Object. Experimental results demonstrate that our CLIP-Hand achieves
state-of-the-art performance. To further evaluate effectiveness and efficiency, we construct a
simple game scenario, as shown in Figure 1, to demonstrate its practical application.

The main contributions of our method are listed as follows:

• We propose a novel framework, CLIP-Hand, for 3D hand pose estimation. Our method
effectively leverages high-resolution features and the power of CLIP to improve performance.

• Under the framework, the HFA, MHF, MTED, CM, and PJ modules are proposed to boost
the performance.

• Experiments on three challenging datasets, FreiHAND, RHD, and Dexter+Object, demon-
strate that our method achieves comparable impressive results.

The rest of the paper is organized as follows. Section 2 briefly introduces related work with a
highlight on recent work. Then, we give the details of the proposed model and the experimental
results in section 3 and section 4, respectively. Finally, the conclusions are drawn in section 5.

2 Related Work

First, we review advanced methods for 3D hand pose estimation. Then, we introduce CLIP’s
applications in 3D hand pose estimation, highlighting their relevance to our work.

2.1 3D Hand Pose Estimation

In recent years, deep neural network-based methods [18–21] have become the dominant
approach for 3D hand pose estimation. These methods can be broadly categorized into two
types based on their input modality: depth-map-based methods [22, 23] and RGB-image-based
methods [24]. While depth map-based approaches provide useful geometric information, their
range is typically constrained, and they are sensitive to environmental factors. In contrast,
RGB images offer high spatial resolution and are easily accessible, making them ideal for down-
stream applications. As a result, RGB-based methods have attracted the most attention in the
field of 3D hand pose estimation due to their faster processing speeds and improved real-time
performance. Recent work in this area has focused on overcoming challenges such as occlusion
and on improving the accuracy and efficiency of 3D pose estimation. For instance, [25] and
[26] address occlusion issues by exploiting the spatial relationships between hand keypoints or
mesh vertices, improving the robustness of 3D hand pose estimation from RGB images. Addi-
tionally, methods leveraging Transformer encoders [15, 27] have been introduced to enhance
the precision of regressed 3D joint and mesh vertex coordinates while also improving the effi-
ciency of both model training and inference. Kim et al. [28] propose a feature sampling strategy
to generate more realistic and natural human and hand poses, further advancing the realism
of the generated 3D poses.

More recently, several works have sought to push the boundaries of 3D hand pose esti-
mation. For interacting-hand scenarios, Jiang et al. [29] extend anchor-to-joint encoding to
handle inter-hand occlusions and complex articulations. Cheng et al. [30] leverage diffusion
models over image–point cloud representations, improving robustness to noise and uncertain
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depth cues. In egocentric vision, Liu et al. [31] enhance depth reasoning by adapting single-
view networks to dual-view settings. These advances reflect an ongoing trend toward unified
architectures that integrate local geometry and global context for high-fidelity 3D hand recon-
struction. Additionally, AHRNet [32] introduces a novel framework that integrates an attention
mechanism with heatmap regression to effectively and efficiently predict 3D joint locations
and reconstruct the hand mesh.

Several recent works have also expanded the scope of hand pose estimation through novel
approaches. For example, Zhao et al. [33] investigate the synthetic-to-real domain gap in 3D
hand pose estimation and propose a new data synthesis pipeline to better align synthetic
data with real-world scenarios. Wang et al. [34] introduce UniHOPE, a unified method for
both hand-only and hand-object pose estimation, leveraging dynamic feature fusion modules
to improve accuracy in complex hand-object interactions. Potamias et al. [35] present WiLoR,
an end-to-end 3D hand localization and reconstruction method that tackles challenges in
multi-hand reconstruction under varying real-world conditions such as occlusion and lighting
variations.

2.2 CLIP in 3D Hand Pose Estimation

The CLIP model, which bridges the gap between computer vision and natural language pro-
cessing, has gained significant attention in recent years. Its first application to hand pose
estimation is explored by Lee et al. [36], who utilize text descriptions to extract text features
and integrate them with the image features to predict 3D hand pose. However, due to the
discrete nature of the hand joint in 3D space, defining effective text prompts that capture
pose-aware features poses significant challenges. To address this, Guo et al. [37] propose a
novel text description method that successfully links irregular joint position labels with text
prompts, ensuring consistent alignment between pose-aware features and their corresponding
textual representations. Further advancements include the work of Zhang et al. [38], who pro-
posed the CLAMP animal pose estimation network. This approach enhances the connection
between text and animal images by adapting the pre-trained language model to incorporate
spatial and feature perception, thereby improving animal pose estimation.

However, it is worth noting that CLIP also has certain limitations when applied to fine-
grained 3D hand pose estimation. Since its feature space is learned from general natural images,
it may struggle under unusual lighting, severe occlusions, or highly unconventional hand shapes
that fall outside its training distribution. To mitigate these issues, our method combines CLIP-
based semantic embeddings with the structural constraints of the 3D hand pose estimation
network. Inspired by [32], this paper employs powerful CLIP technology to enhance feature
extraction, thereby improving the performance of 3D hand pose estimation and robustness
under complex real-world conditions.

3 Methodology

3.1 Overview of CLIP-Hand

The goal of this task is to estimate the 3D joint positions P ∈ RJ×3 of the human hand in the
camera coordinate system, given an input RGB image I ∈ RH×W , where H and W represent
the height and width of the input image, respectively, and J = 21 denotes the total number
of hand joints.

Accurately estimating the 3D positions of hand joints, particularly their relative depth,
is challenging due to occlusions, hand pose variations, and depth ambiguity in RGB images.
Hand pose estimation can generally be approached using two main techniques: regression-
based methods and detection-based methods. Regression-based methods directly predict the
3D coordinates of hand joints from the input image by extracting relevant features and mapping
them to 3D space. However, these methods often struggle to handle complex hand movements
and joint interdependencies. In contrast, detection-based methods use convolutional neural
networks (CNNs) to generate heatmaps indicating hand joint locations, followed by post-
processing to extract joint positions. While detection-based methods can achieve high precision,
they may struggle to accurately estimate depth in 3D space, particularly under occlusions or
extreme hand poses. In this paper, we propose a novel method, CLIP-Hand, that combines the
strengths of both regression-based and detection-based techniques to achieve more accurate
and robust 3D hand pose estimation. The architecture of our proposed method, as illustrated
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Fig. 2 Overview of the proposed CLIP-Hand, which mainly consists of (1) High-resolution Feature Aggregation
(HFA), responsible for extracting high-resolution feature maps; (2) Multi-scale Heatmap Fusion (MHF), con-
centrating on learning vertex, joint and attention map features; (3) Multi-layer Transformer Encoder-Decoder
Fusing Attention (MTED), leveraging attention to regress 3D hand vertices and joints; (4) CLIP Module (CM),
used to obtain more plausible feature representations; (5) the Predefined 3D Joint (PJ) module, focusing on
boosting performance. Best viewed in color.

in Figure 2, consists of four modules: HFA, MHF, MTED, and CM. Meanwhile, we adopt the
PJ module to boost the performance.

Global�features

High-resolution

features

Upsampling PATMatrix�addition

Fig. 3 The structure of HFA module, which is designed to preserve high-resolution feature maps by aggregating
features from multiple layers with varying resolutions.

3.2 High-resolution Feature Aggregation (HFA) Module

Although frameworks like the Swin Transformer [39] are capable of extracting effective fea-
ture representations, the resolution of these features tends to decrease as the network depth
increases. To preserve high-resolution feature maps, it becomes necessary to aggregate fea-
tures from multiple layers with varying resolutions. As illustrated in Figure 3, we adopt the
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approach proposed by Zheng et al. [40] to effectively combine features from different layers
and obtain high-resolution feature maps.

The process of high-resolution feature aggregation begins by upsampling the image feature
f2(D2 × H

8 × H
8 ) from the second stage to obtain f ′

2(D2 × H
4 × H

4 ). This upsampled feature is

then concatenated with the image feature f1(D1 × H
4 × H

4 ) from the first stage to produce the

combined feature f12(D1 × H
4 × H

4 ). The same procedure is repeated to generate the feature

f123(D1 × H
4 × H

4 ). Next, the feature f123 is concatenated with f ′
4(D1 × H

4 × H
4 ) and passed

through a PAT block [40] for dimensionality reduction and compression of the two-dimensional
image features. Finally, the high-resolution feature f1234(D × H

4 × H
4 ) is obtained, where Di

denotes the channel of the image feature.

HFA

ResBlock1 ResBlock2 ResBlock3

HFA

Conv2d(D,N)

Cat�Flatten

3D�Joint�Point�

Heat�Map�Features

(B,21,56,56)

3D�Mesh�Vertex�

Heat�Map�Features

(B,195,56,56)

Attention�Features

(B,512,56,56)

Flatten

Transpose

BN

RELU

Conv2d(N,N)

BN

Conv2d(D,N)

(B,512,3136)

(B,3136,512)

ResBlock

BNCamera�Parameter

(B,1,512)
(217,B,512)

MTED
3D�Mesh�Vertex�Features/Attention�

Features/3D�Joint�Point�Features

(195,56,56)/(512,56,56)/(21,56,56)

(B,216,3136)

Fig. 4 The structure of MHF module, which integrates 3D joint point, mesh vertex heatmap and attention
features via ResBlocks.

3.3 Multi-scale Heatmap Fusion (MHF) Module

Through the Hand Feature Aggregation (HFA) module, we obtain high-resolution features
f1234, which are subsequently passed to the vertex heatmap branch, joint heatmap branch,
and attention feature branch. The structures of these branches are illustrated in Figure 4. To
process the high-resolution features, we employ the ResBlock module [41]. Initially, the high-
resolution feature f1234 ∈ D×H

4 ×
H
4 (withD = 64) is input into the ResBlock module. Through

the ResBlock network, we obtain the vertex heatmap features (B × N1 × H
4 × H

4 with N1 =

195), joint heatmap features (B × N2 × H
4 × H

4 with N2 = 21), and attention map features

(B ×N3 × H
4 × H

4 with N3 = 512).
Subsequently, the vertex heatmap and joint heatmap features are passed through a Softmax

layer and matrix-multiplied with the transposed attention map features. This process yields
the grid vertex heatmap features (195, B, 512) and joint features (21, B, 512) with attention,
which serve as the grid vertex queries and joint queries for the subsequent MTED module.
Simultaneously, a feature with dimensions (1, B, 512) is obtained by fully connecting the global
features, which is used as the initial weak perspective camera parameters (Cam Queries).
Finally, these features are concatenated to form a feature vector with dimensions (217, B, 512),
which serves as the query input for the subsequent MTED module.

3.4 Multi-layer Transformer Encoder-Decoder (MTED) Module

Inspired by the progressive dimension reduction scheme in [15] and the novel transformer
encoder-decoder architecture in [16], we propose a progressive dimension reduction transformer
encoder-decoder architecture for regressing the final 3D hand vertices and joints. In our design,
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Fig. 5 Structure of the MTED module: This module integrates global features and positional encoding to
inform the decoding process. It optimizes pose estimation accuracy through cross-attention mechanisms and
progressive masking.

the global features serve as the Key and Value in the decoder, while the features fs are used
as queries. By incorporating the cross-attention module into the decoder, we can effectively
capture the non-local relationships between hand joints and mesh vertices. As a result, we
obtain the joint features Xj ∈ RN2×2D and vertex features Xv ∈ RN1×2D.

Additionally, we utilize the progressive attention masking scheme proposed in [28], which
places greater emphasis on vertices and joints within specific distance thresholds during learn-
ing. As shown in Figure 5, four masks are used in our approach, with distance thresholds set
to 7, 5, 3, and 1, respectively. These thresholds define the local connections between vertices,
progressively reducing the range to facilitate the model’s consideration of local relationships
between adjacent vertices.

3.5 CLIP Module (CM)

While the three modules discussed above demonstrate strong performance, the complexity and
self-occlusion inherent in hand poses can sometimes hinder the extraction of sufficient informa-
tion from images alone. To enhance the model’s performance, we incorporate a CLIP module,
which improves pose estimation accuracy by leveraging textual descriptions. Specifically, the
RGB image and the corresponding text prompt (please refer to 4.1) are input into the image
encoder and text encoder, respectively, to extract the hand image features fimg and the corre-
sponding text features ftext. These features are then concatenated to form the fusion feature
fclip.

To effectively integrate the fusion feature fclip from the CLIP module into the hand pose
estimation network, we adopt a contrastive learning approach. Specifically, we duplicate the
global features into two copies: f1 and f2. The fusion feature fclip is added to the global feature
f2, and the resulting global features f11 and f22 are obtained by sharing the weights of f1 and
f2 after adding the fusion feature, as shown in Figure 2. For the positive and negative samples,
we adopt [42] to generate them. A contrastive learning loss is then applied to supervise the
global feature representation in the network, thereby improving the model’s ability to extract
more accurate image features.
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Fig. 6 Illustration of the predefined hand poses.

3.6 Predefined 3D Joint (PJ) module

To enhance model performance, we introduce a Predefined 3D Joint (PJ) module that inte-
grates 19 predefined hand gestures [43], as shown in Figure 6. These gestures, derived from the
Light-HaGRID dataset containing about 120,000 RGB hand images across 18 gesture types
(e.g., fist, OK, like, peace, palm, call, stop) plus an additional “no-gesture” class, represent
common daily actions. Although they cannot fully cover the continuous hand-pose space, they
serve as representative discrete samples providing semantic and geometric diversity, defin-
ing meaningful directions in the high-dimensional pose space, and enabling the network to
interpolate between poses.

We trained a YOLOv5 network on the Light-HaGRID dataset to obtain accurate hand
detection boxes and gesture category predictions. Each image is annotated with gesture class
and bounding box information in JSON format, with about 7,000 samples per class. After
extending the gesture categories to 19, the trained YOLOv5 model achieved a final mAP@0.5
of 96.4% on the validation set and was then used to classify hand gestures in the FreiHAND
dataset, providing reliable categorical cues for subsequent feature alignment.

In the PJ module, the predefined 3D hand joint templates (each of size 21× 3) correspond
to the 19 gesture categories. The same rotation and scaling transformations applied during
data augmentation are also applied to the predefined templates to ensure geometric consis-
tency. The augmented joint templates Xde j 3d and predicted joint points Xpred j 3d are fed
into an attention module, where the templates serve as Key and Value vectors and the pre-
dicted joints act as the Query. Through this attention-based mechanism, the module learns
adaptive soft weights between the predicted and reference joints, dynamically fusing multiple
templates rather than memorizing a single one. This design enables efficient spatial correlation
modeling and stabilizes optimization. Additionally, the contrastive learning objective encour-
ages discrimination between structurally similar but semantically distinct gestures, preventing
feature collapse and improving robustness.

The PJ module thus combines semantic coherence and geometric validity, demonstrat-
ing strong generalization across unseen subjects, viewpoints, and lighting conditions. The
YOLOv5-based classification ensures semantic consistency (e.g., similar gestures such as fist
and half-fist share close feature representations), while the 19 templates provide a standard-
ized geometric scaffold that maintains structural plausibility under occlusion or rotation.
Experiments on RHD and Dexter+Object verify that the module maintains high accuracy
and robustness under challenging conditions, including occlusion, background clutter, and
illumination variation.

3.7 Loss function

The proposed 3D hand pose estimation method based on attention and different scale heatmaps
is trained on five loss functions, namely, the hand 3D mesh vertex loss Lvert, the hand 3D joint
point loss Lj3d, the hand 2D joint point loss Lj2d, the heatmap loss Lhp, and the contrastive
learning loss Lhp. The Lvert employs the L1 loss function to quantify the discrepancy between
the predicted vertices and the ground truth vertices. The Lj3d utilizes the mean squared error
(MSE) loss function to measure the difference between the predicted joints and the ground
truth joints, as well as the disparity between the 3D joints regressed from the predicted vertices
and the ground truth joints. The Lj2d applies the L1 loss function to compute the difference
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between the projected 2D joint coordinates, obtained by applying camera intrinsic parame-
ters to the predicted vertices, and the corresponding ground truth 2D joint coordinates. The
Lhp measures the difference between the predicted heatmap and the ground truth heatmap.
Furthermore, contrastive loss Lcon NT-XentLoss [44] is employed to enhance the learning of
generalizable features, thereby improving the robustness of hand pose estimation.

The final loss of the proposed 3D hand pose estimation network based on different-scale
heatmaps is given by Equation 1.

Ltotal = Wvert × Lvert +Wj3d × Lj3d +Wj2d × Lj2d + Lhp +Wcon × Lcon (1)

where Wvert, Wj3d, Wj2d, Wcon are the balance factors of each loss term, which are set to
1000, 1000, 100, and 10, respectively.

The weighting strategy is empirically tuned to balance gradients across heterogeneous
objectives. Since the contrastive loss (101–102) is orders of magnitude larger than geometric
losses (below 10−4), higher coefficients are assigned to geometric terms to prevent semantic
dominance and preserve spatial accuracy. This configuration ensures stable convergence and
robust performance on FreiHAND, RHD, and Dexter+Object.

4 Experiments

4.1 Datasets

The FreiHAND. The FreiHAND dataset [45] is a real-world 3D hand dataset with images
with a green screen background, which facilitates changing the background for network train-
ing. The dataset contains 130,240 training images and 3,960 test images from the multi-view
setup, providing an image resolution of 224×224. They provide 21 joint position annotation
information, hand mask, and camera parameter matrix.
RHD dataset. The RHD dataset [13] is a synthetic hand image dataset, which contains
2020 character models and 39 actions with a total of 43,986 frames (41,258 for training and
2,728 for evaluation). The dataset has an image resolution of 320×320 and provides depth
segmentation masks for 21 hand joints and location annotation information for both 2D and
3D hand joints. The training and test sets of this dataset do not have the same features or
actions and cover more rare poses. Each RGB image of this dataset has a corresponding pose
label and mask label.
Dexter+Object dataset. The Dexter+Object dataset [46] is designed to facilitate the eval-
uation of hand pose estimation and hand-object interaction analysis, and consists of six
sequences recorded from two subjects, encompassing a total of 3,014 frames with a resolution
of 640 × 320 pixels. These frames capture complex hand-object interactions involving cuboid
objects, providing a unique and valuable resource for investigating the dynamics of hand move-
ments during physical interactions. Given its emphasis on interactive scenarios, the dataset
is particularly critical for assessing the performance of hand pose estimation algorithms in
real-world, dynamic contexts.
Text dataset. In this paper, we introduce the phrase “An image/picture of hand with color
background” to describe the various backgrounds associated with hand RGB images to form
text-image pairs. This phrase serves as a template for generating text prompts that capture
the diverse backgrounds in our dataset used for training and testing. The combination of text
prompts for different backgrounds is presented in Table 1, which illustrates how different color
backgrounds are associated with hand images. This approach provides a structured repre-
sentation of hand images across diverse environments, facilitating evaluation of the model’s
robustness under varying background conditions.

To further enrich semantic information, we incorporate gesture category predictions and
construct the final prompt format as “an image of a hand on a {color} background in a
gesture that means {class}.”Here, class corresponds to one of the 19 predefined gesture labels
(e.g., “peace,” “fist,” “like,” “OK,” “palm”), and color denotes the sampled background type.
This text–image pairing strategy allows the CLIP encoder to learn both visual and semantic
correspondences, thereby improving robustness to variations in gesture type and background
complexity. Representative examples of the constructed prompts are provided in Table 2 for
clarity and reproducibility.
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Table 1 Background text generation for hand RGB images of the
FreiHAND dataset.

Image Hand Color Background

a cropped image of hand with mustard lime room
an image of right hand with bright dark background

a cropped photo of green purple
a picture of white silver

one olive black
a photo of orange red

a photo of right blue yellow
gray beige
pink brown
coral wine

Table 2 Image–text paired samples constructed from the FreiHAND
dataset.

Image Text

an image of a hand on a bright room in a gesture
that means “peace inv.”

an image of a hand on a mountain background in
a gesture that means “one”

an image of a hand on a green background in a
gesture that means “palm”

an image of a hand on a mountain background in
a gesture that means “two up inv.”

4.2 Implementation details

Parameter settings. All the experiments of our CLIP-Hand are trained using the AdamW
optimizer [47] with a batch size of 8 on Geforce 4090 GPUs by PyTorch. The initial learning
rate is set to 10−4. We train our model for 120 epochs and lower the learning rate by a factor of
10 after each 40 epochs. Even with random seeds set, we observe that the model’s performance
remains erratic. Therefore, we present the average performance across three trials to overcome
fluctuations in this paper.
Model size and running time. We record the model parameters saved by PyTorch for
METRO [15], Fast METRO [16] and our CLIP-Hand. The size of METRO and Fast METRO
are 230.4M and 153.0M, respectively, and our model is 76.3M. Hence, the proposed modules
do not yield substantial parameter increases over the compared models. For training time,
METRO and Fast METRO take around 1.05 s and 0.90 s per iteration, and our CLIP-Hand
is 0.83 s, while for inference time, METRO and Fast METRO take around 51 ms and 46 ms
per iteration under batch size 1, and our CLIP-Hand is about 41 ms.
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Fig. 7 Visualizations of our predicted 3D pose and mesh results on the FreiHand dataset.

4.3 Comparison with state-of-the-art methods

Experiment on FreiHAND dataset. To demonstrate the effectiveness of our model, we
make comparisons with state-of-the-art methods and report the results on the FreiHand dataset
in terms of FPS, Params, FLOPs, PA-MPJPE, and F@15, as shown in Table 3. Similar to
[40], we increase the number of blocks to boost the performance.

Table 3 Quantitative comparisons with state-of-the-arts on the FreiHand dataset.

Methods FPS Params FLOPs PA-MPJPE F@15mm

Hasson [48] – – – – 0.908
MANO CNN [45] – – – – 0.935
Pose2Mesh [49] 8 – – 7.7 0.969
I2LMeshNet [50] – – – 7.4 0.973
METRO [15] 19.55 183.80M 41.47G 6.8 0.981

FastMETRO [16] 21.88 133.90M 30.56G 6.5 0.982
FastViT [51] 84 – – 6.6 0.981

Our CLIP-Hand-cls-S12 42.36 30.64M 34.01G 7.0 0.979
Our CLIP-Hand-cls-S24 30.20 40.20M 34.89G 6.3 0.984

In the comparison results, the last two rows correspond to the large and small models of
our method, with the PAT module having layer sizes (2, 2, 6, 2) for the small model and
(4, 4, 12, 4) for the large model. Our CLIP-Hand-cls-S24 model, the large version, achieves a
PA-MPJPE of 6.3. Compared to other methods, CLIP-Hand achieves equivalent performance
while delivering significantly higher frame rate (FPS). Furthermore, compared with METRO
and FastMETRO, CLIP-Hand has fewer parameters, shorter training iterations, and faster
inference per iteration, making it both more efficient and effective.
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Figure 7 visualizes the predicted results of the CLIP-Hand model on the FreiHAND dataset.
It demonstrates that the proposed method achieves convincing accuracy in predicting the 3D
joint points of the hand and the 3D mesh vertices.
Experiment on the RHD and Dexter+Object datasets. To verify the accuracy of
the proposed CLIP-Hand, we also evaluate our method on the RHD and Dexter+Object
datasets, and make comparisons with previous methods. The 3DPCK evaluation index within
the threshold of 0-0.5cm, namely PCK@0.5, is leveraged to conduct quantitative evaluations,
and the results are shown in Table 4. It can be seen from Table 4 that the proposed CLIP-Hand
method outperforms other methods on RHD and Dexter+Object datasets.

Table 4 Quantitative comparisons with state-of-the-arts on
RHD and Dexter+Object.

Methods
RHD Dextere+Object

AUC of PCK@0.5↑ AUC of PCK@0.5↑
Baek et al.[52] 0.926 0.650
Zhang et al. [53] 0.901 0.825
Rong et al.[54] 0.934 -
Cui-GCN [55] 0.933 0.77
Gu et al.[56] 0.936 -

Hao et. al. [57] 0.92 -
Our CLIP-Hand 0.941 0.938

4.4 Ablation studies

We conduct ablation studies on the FreiHand dataset using the large model (CLIP-Hand-cls-
s24, termed as s24), as presented in Table 5. The results of the ablation study provide insights
into the incremental contributions of each module to the performance of the CLIP-Hand model.
The evaluation metrics include PA-MPJPE, which measures the average distance between
predicted and actual hand joint positions, and F@15mm, which represents the proportion of
correctly estimated poses in terms of the joint errors being within a defined margin.

Starting with the baseline model (s24), we observe a PA-MPJPE of 7.24 mm and an
F@15mm of 0.978. As modules are sequentially added, both metrics show a general trend of
improvement. Specifically, a. adding the MTED module yields a slight improvement, with the
PA-MPJPE reducing to 7.06 mm and F@15mm increasing to 0.979; b. incorporating the HFA
module further enhances performance, resulting in a PA-MPJPE of 7.13 mm and F@15mm of
0.979; e. the inclusion of the MTED module alongside the HFA and MHF combination leads
to continued improvement, with a PA-MPJPE of 6.74 mm and F@15mm of 0.981; and g. the
full combination of all modules achieves the best performance, with the lowest PA-MPJPE of
6.32 mm and the highest F@15mm of 0.984.

Table 5 Ablation experiments on FreiHand dataset for different modules of
CLIP-hand.

Methods PA-MPJPE F@15mm
a. Baseline(s24) 7.24 0.978
b. Baseline(s24)+MTED 7.06 0.979
c. Baseline(s24)+HFA 7.13 0.979
d. Baseline(s24)+HFA+MHF 6.86 0.980
e. Baseline(s24)+HFA+MHF+MTED 6.74 0.981
f. Baseline(s24)+HFA+MHF+MTED+CM 6.58 0.982
g. Baseline(s24)+HFA+MHF+MTED+CM+PJ 6.32 0.984

To provide a deeper understanding of the proposed three modules, we present qualitative
ablation studies with and without these modules on the FreiHand dataset in Figure 8. From
left to right, (a) gives the result of row b in Table 5, (b) is the result of row e in Table 5, (c)
is the result of row f in Table 5, and (d) is our CLIP-Hand.

To further verify the effectiveness of our method, we conduct additional experiments and
analyses on scenes with complex backgrounds and varying illumination conditions to better
understand its applicability. For the detailed results, please refer to Figure 9.
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Fig. 8 Visualization of the CLIP-Hand model: From left to right, (a) presents the result of row b in Table 5,
(b) shows the result of row e in Table 5, (c) depicts the result of row f in Table 5, and (d) is the result of our
CLIP-Hand model. We highlight the contributions of various modules and showcase the model’s performance
across different configurations.

Fig. 9 Visualization of RGB hand images in a lab environment. (a) shows RGB hand images captured in a
lab environment; (b) presents hand images collected after altering the background and reducing the lighting;
(c) depicts hand images collected with enhanced lighting. The results demonstrate that our method maintains
strong performance even on hand images that are out of distribution in the training set.

5 Conclusion

In this study, we have presented a comprehensive approach to the challenging task of 3D
hand pose estimation and mesh recovery from single RGB images. Our proposed method,
CLIP-Hand, leverages the strengths of high-resolution feature aggregation and contrastive
language-image pre-trained models (CLIP) to enhance feature representations, thereby improv-
ing the prediction accuracy of hand meshing and joint points. By integrating a multi-layer
Transformer encoder-decoder module and a predefined 3D joint module, our method opti-
mizes the accuracy and generalization of 3D gesture pose estimation. Extensive experiments
conducted on standard benchmarks have demonstrated the effectiveness of our approach. The
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results indicate that our method achieves comparable accuracy and robustness to state-of-the-
art techniques while exhibiting improved efficiency. This is particularly evident in the higher
frame rate our method delivers, which is crucial for real-time applications in interactive virtual
environments and human-computer interaction. Future work will focus on further enhancing
the model’s generalization capabilities and exploring additional applications in augmented real-
ity, virtual reality, and robotics. While the current CLIP-Hand has demonstrated promising
results, there is room for further enhancement, particularly in incorporating temporal infor-
mation. In future work, we aim to integrate temporal features into our model to capitalize on
the sequential nature of hand movements.
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